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mmm Introduction

* Time Series Anomaly Detection
Multivariate Time series Cl|O|E{= Ct¥Fet F2O00i[A AFSE| 1 QUS.
T F0i|A O|AEIK] = 0 Rt 2t & i,

2Lt A time series 2| anomaly = OHS CHFoE SEHE LIER-tA] detection O| 0{213.
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(Diffusion-based) Time Series Anomaly Detection

[KDD 2023] (DiffAD) Imputation-based Time-Series Anomaly Detection with Conditional Weight-Incremental Diffusion Models

[VLDB 2024] (ImDiffusion) Imputed Diffusion Models for Multivariate Time Series Anomaly Detection
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ABSTRACT

Existing anomaly detection models for time series are primarily
trained with normal-point-dominant data and wmlld become inef-
fective wh
o s tis problem, e propore anies approach, ealled DIFAD,
from the perspective of time series imputation. Unlike previous
prediction- and reconstruction-based methods that adopt either
partial or complete data as observed values for estimation, DIFAD
uses a density ratio-based strategy to select normal observations
Jexibly that can easily adapt to the anomaly concentration scenar-
10s. To alleviate the model bias problem in the presence of anomaly
concentration, we design a new denoising diffusion-based impu-
tation method to enhance the imputation performance of missing
values with conditional weighi-incremental d.\ﬁ\lsmn, which can
preserve
Provesdatsgencraion quliyfo stale anormaly cetcetion. Beuden
we customize a multi-seale state space model to capture the long-
term dependencies across episodes with different anomaly pattems.
Extensive experimental results on real-world datascts show that
DifIAD performs better than state-of-the-art benchmarks.

CCS CONCEPTS
+ Computing methodologies — Anomaly detection; - Mathe-
‘matics of computing — Time series analysis.
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Time series, diffusion models, state space model, data imputation
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1 INTRODUCTION

‘Time series anomaly detection aims to identify unusual samples
that significantly deviate from the majority in time series. It can en-
able wamings and precautions in advance that potentially prevent
large malfunctions, which is quite meaningful for a broad variety
of applications, such as discovering exceptions of underlying sy
{emns [55], moritoring daa-filues in lage-scale datasts ¢4, and.
detecting dramatic changes of KPI in business operations [45].

In practical applications, anomalies are often rare and mived up
with vast normal points, making datalabeling difficult, Hence, most
studies focus on identifying lies using unsupervised meth-
ods [4,37], For example, density stimation [, 50] and clustering
approaches [38, 40] have been designed for anomaly detection, in
particular in the context of time series. Recently, benefiting from
mg representation learning eapability of neural networks, dzzp

ed te have achieved superior performance for

anumalv detection amd atracted much attention s both academis
and indtay They can primarly be summarized into ko cate-

[12,51] d [49, 56].
The former builds a predictive mndel to infer the suhszqnmt data
using the istorical data, and then determines anomalies based on
the prediction errors be tween estimated values and real values. The
reconstruction-based approaches reconstruct the test data based
on training instances and then perform anomaly detection based
onthe reconstruction errors.

Although great success has been achieved by prior studies, they
may still suffer from performance degradation especially when the
anomalous points are not uniformly distributed over the whole
time series but concentrating at some regions — We call this phe-
nomenon anomaly concentration. In this case, both prediction-

nd based y fail to y y
anomalous points, because their models are usually trained for re-
gionswhere normal data are dominant [¢,37]. When anomalous
in some regions, estimation should be signif-

and/ora ee. Request permissions from permissions@acmors,
DD 23, August6-10, 2425, Long Booch, CA, USA
by ‘Pubiication rights lisensad to ACM.

M ISBN 975--4007-0101-0123/08...$15.00
hitpsy//doL.og/10.1 145/3580305.359351

icantly influenced by intensive anomalous points in such a con-
text, making existing methods inappropriate and even invalid. An
illustrative example of concentrated anomalies is presented in Fig-
ure 1, where blue and red points denote normal and anomalous
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Anomaly detection in multivariate time series data is of paramount
importance for ensuring the efficient operation of large-scale sys-
tems across diverse domains. However, accurately detecting anom-
alies in such data poses significant challenges due to the need for
precise modeling of complex multivariate time series data. Existing
approaches, including forecasting and reconstruction-based meth-
ods, struggle to address these challenges effectively. To overcome
these limitations, we propose a novel anomaly detection framework
named IMDirrusion, which combines time series imputation and
diffusion models to achieve accurate and robust anomaly detection.
The imputation-based approach employed by IMD1rrusion lever-
ages the information from neighboring values in the time series,
enabling precise modeling of temporal and inter-correlated depen-
dencies, reducing uncertainty in the data. thereby enhancing the
robustness of the anomaly detection process. IuDirrusion further
leverages diffusion models as time series imputers to accurately cap-
ture complex dependencies. We leverage the step-by-step denoised
outputs generated during the inference process to serve as valuable
signals for anomaly prediction, resulting in improved accuracy and
robustness of the detection process.

‘We evaluate the performance of INDIFFUSION via extensive ex-
periments on benchmark datasets. The results demonstrate that
our proposed framework significantly outperforms state-of-the-art
approaches in terms of detection accuracy and timeliness. luD-
trruston is further integrated into the real production system in
Microsoft and observes a remarkable 11.4% increase in detection F1
score compared to the legacy approach. To the best of our knowl-
edge, INDIFFUSION represents a pioneering approach that combines
imputation-based techniques with time series anomaly detection,
while introducing the novel use of diffusion models to the field
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1 INTRODUCTION

The efficient operation of large-scale systems o entities heav-
ily relies on the generation and analysis of extensive and high-
dimensional time series data. These data serve as a vital source
of information for continuous monitoring and ensuring the opti-
mal functioning of these systems. However, within these systems,
various abnormal events may occur, resulting in deviations from
the expected downstream performance of numerous applications
[4, 31, 60]. These anomalous events can encompass a broad spec-
trum of issues, including production faults [12, 44], delivery bottle-
necks [28], system defects [74, 76], or irregular heart hythms [37].
When different time series dimensions are combined, they form a
‘multivariate time series (MTS). The detection of anomalies in MTS
data has emerged as a critical task across diverse domains. Indus-
ries spanning manufacturing, finance, and healthcare monitoring,
have recognized the importance of anomaly detection in main-
taining operational efficiency and minimizing disruptions [29, 6o,
and the field of MTS anomaly detection has garnered significant

attention from both academia and industry [2.5,7, 9, 43]
However, achieving accurate anomaly detection on MTS data is
not | as it necessitates of time se-

riesdata 4,47, 78] The complxity of modern lrge-scale systems
introduces additional challenges, as their performance is monitored
by multiple sensors, generating heterogeneous time series data that
encompasses multidimensional, intricate, and interrelated tempo-
ral information [38, 46]. Modeling complex correlations like these
requires a high level of capability from the model. Furthermore,
time series data often displays significant variability [15], leading

sedunderthe Creative Commns BCNC-ND 40 Inrnations
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o coverd by i e, abain permission by
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« [KDD 2023] (DiffAD) Imputation-based Time-Series Anomaly Detection with Conditional Weight-

Incremental Diffusion Models

Z2MIH™: 7|Z deep learning 2HHO| BiEhof| = 2516111, anomaly concentration AFZH0IA 50| E£X| 2. (prediction, reconstruction-based)
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Figure 1: An example of anomaly concentration drawn sam-
pled from the server machine dataset. Blue and red points
denote normal and anomalous ones, respectively. Episode e
is an anomaly concentration region, and episode e; and e3
are normal data dominant regions.
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- [KDD 2023] (DiffAD) Imputation-based Time-Series Anomaly Detection with Conditional Weight-

Incremental Diffusion Models
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Figure 2: The CDFs of the consecutive anomalous points.
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- [KDD 2023] (DiffAD) Imputation-based Time-Series Anomaly Detection with Conditional Weight-

Incremental Diffusion Models
X[t BHHE DiffAD 1125 3A| 37HK| A QA E Bl US
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- [KDD 2023] (DiffAD) Imputation-based Time-Series Anomaly Detection with Conditional Weight-

Incremental Diffusion Models

Mt UHHE DiffAD T1%: 1) Density ratio-based selection

Density ratio-based selection

. — Jie—1(x)
b el A W
o ' xob Conditional weight- k
= I diffusion . o :
‘“Crem;‘;tzx 6\;{5“1’; | v,:rhere fie—1(x) and fk(x) cortjespond to estm.aated probability densi-
1 | ties of the two consecutive windows respectively. Then, the change
L4 ;H A= =M score is calculated:
.i'T xl‘—] xO : : : s
Y . ) - I‘
CHG = Max [0, =~ — - ; g (x"), ) (2)

- Multi-scale S4-based U-Net
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Incremental Diffusion Models

Xt 2bH = DiffAD FLZ: 2) Conditional weight-incremental diffusion
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[KDD 2023] (DiffAD) Imputation-based Time-Series Anomaly Detection with Conditional Weight-

Incremental Diffusion Models
M|t UHHE DiffAD TLZ: 2) Conditional weight-incremental diffusion

xT=s@xﬂf’+(1—s)e(g(xﬂ"’)y+£?(1—y)), (5)
To parameterize pg(x!, x°P, t), we train a neural denoising model
Density ratio-based selection fo(xt, x°b 1) to predict the noise vector €. The objective is defined
| as follows:
Conditional weight- ExﬂbE(e £) | ||f9 (xf1 xﬂbj f) - EHg ’ (7)
- incremental diffusion . '
Do (xX0x 1) and pp(x’, x°% t) can be derived from fo(xt, x°P 1)

AMA L= A ob 1 t l—ay t _ob

| pg(x*,x%%, 1) = ———‘(x - ——Jfo(x" . x"",1)]. (8)
xH xO : \/a_t V1 —a;
Consequently, the generative (reverse diffusion) process is:
L P s
" Multi-scale S4-based U-Net \ O V1—a; ’ ’

Xt =s@((1—h(r—1))5cf-1 +h(:—1)x0”)+(1 oz
(11)
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- [KDD 2023] (DiffAD) Imputation-based Time-Series Anomaly Detection with Conditional Weight-

Incremental Diffusion Models

H|otHHEHE DiffAD 11: 3) Multi-scale S4-based U-Net (structured state-space sequence model)
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- [KDD 2023] (DiffAD) Imputation-based Time-Series Anomaly Detection with Conditional Weight-

Incremental Diffusion Models

Anomaly score S A&sh= 4hH

For anomaly detection, we compare the anomaly score with a given
threshold to determine anomalies. For a testing point, its anomaly
score is computed based on the estimation error:

d
AS(ei) = ) llek = éf1I%, (12)
k=1

where ¢; and ¢; are the real value and estimated value, respectively,
and d refers to the dimension of multivariate time series.

Similar to the previous works [57], we obtain the threshold based
on the training data. Given the training data X = {c1,c2,....,cN},
the corresponding decision threshold 7 is:

KOREA ..:.. Data Mining
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- [KDD 2023] (DiffAD) Imputation-based Time-Series Anomaly Detection with Conditional Weight-

Incremental Diffusion Models
AF2st |0 |E{All A

Table 1: Descriptive Statistics of Datasets

Datasets Applications # Dimension # point anomaly(%)

MSL Space 55 132,046 10.5%
SWaT Water 51 944919 12.1%
PSM Server 25 220,322 27.8%
SMAP Space 25 562,800 12.8%
SMD Server 38 1,416,825 4.2%
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UNIVERSITY ... Quality Analytics




mmm Methods

- [KDD 2023] (DiffAD) Imputation-based Time-Series Anomaly Detection with Conditional Weight-

Incremental Diffusion Models

ARgst l|o|efllofl chigh 45

Table 2: Performance comparison between DiffAD and baselines on the five datasets.

Method MSL SWaT PSM SMAP SMD
P R F1 P R F1 P R F1 P R F1 P R F1

DAGMM 89.60 6393 7462 8992 5784 7040 9349 70.03 80.08 86.45 56.73 6851 6730 49.89 57.30
MPPCACD 81.42 6131 6995 8252 6829 7473 76.26 7835 7729 88.61 7584 8173 71.20 79.28 75.02
LOF 47.72 8525 61.18 72,15 6543 6862 57.89 9049 7061 58.93 5633 57.60 5634 39.86 46.68
ITAD 69.44  84.09 76.07 63.13 52.08 57.08 72.80 6402 68.13 8242 6689 7385 86.22 7371 79.48
THOC 88.45 9097 8969 8394 86.36 8513 88.14 9099 8954 9206 8934 90.68 79.76 90.95 84.99
Deep-SVDD 91.92 7663 8358 8042 8445 8239 9541 8649 90.73 8993 56.02 6904 7854 79.67 79.10
CSDI 90.46 9092 90.69 91.66 9198 91832 9430 9523 9476 9423 9385 94.04 88.32 89.03 88.67
STING 88.25 89.15 88.70 87.28 87.69 87.48 9235 9347 9291 8897 8§9.835 8941 85.14 8649 8581
CL-MPPCA 73.71 88.54 8044 76.78 8150 79.07 56.02 9993 7180 86.13 63.16 72.88 8236 76.07 79.09
LSTM 85.45 82,50 8395 86.15 83.27 8469 7693 89.64 8280 8941 7813 8339 78,55 85.28 81.78
LSTM-VAE 8549 7994 8262 76.00 89.50 82.20 73.62 8992 809 9220 6775 7810 7576 90.08  82.30
BeatGAN 89.75 8542 8753 6401 8746 7392 9030 9384 92.04 9238 5585 69.61 7290 84.09 78.10

OmniAnomaly 89.02 86.37 87.67 81.42 8430 8283 8839 7446 80.83 9249 8199 8692 8368 86.82 85.22
InterFusion 81.28 9270 86.62 80.59 8558 83.01 83.61 83.45 83.52 89.77 88,52 89.14 87.02 8543 86.22
ATransformer 92.09 9515 9359 9155 9673 9407 9691 9890 97.89 9413 99.40 96.69 89.40 9545 92.33

DiffAD 92.97 9544 94.19 98.44 96.90 97.66 97.00 9892 97.95 96.52 9738 96.95 90.01 95.67 92.75
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- [KDD 2023] (DiffAD) Imputation-based Time-Series Anomaly Detection with Conditional Weight-

Incremental Diffusion Models

Ablation study Table 3: The role of different components
Dataset | Metric | DiffAD-  DiffAD-  DiffAD-  DiffAD-  DiffAD
Base Weight MS4 CHG (Full)
P 85.64 87.51 89.84 90.42 92.97
MSL R 86.55 87.46 87.35 92.57 95.44
F1 86.09 87.48 88.58 91.48 94.19
P 90.12 91.22 94,37 95.55 98.44
SWaT R 91.24 91.94 93.65 96.16 96.90
F1 90.68 91.58 94.01 95.85 97.66
P 91.61 92.49 94.05 95.98 97.00
PSM R 93.64 94.54 95.87 96.13 98.92
F1 92.61 93.50 94.95 96.05 97.95
P 89.45 90.36 92.62 94.28 96.52
SMAP R 90.44 91.03 92.99 95.67 97.38
F1 89.94 90.69 92.80 94.97 96.95
P 81.87 83.21 85.64 88.33 90.01
SMD R 85.42 86.89 89.33 92.75 95.67
F1 83.61 85.01 87.45 90.49 92.75
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[VLDB 2024] (ImDiffusion) Imputed Diffusion Models for Multivariate Time Series Anomaly

Detection
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Figure 1: Examples of reconstruction, forecasting and impu-
tation modeling of time series for anomalyv detection.
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 [VLDB 2024] (ImDiffusion) Imputed Diffusion Models for Multivariate Time Series Anomaly

Detection
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Figure 6: The ensemble anomaly inference of IMDIFFUSION.
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Total votes
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Algorithm 1 The ensemble inference process of IMDIFFUSION.

1:

Inputs:

Masked data input series Xti”, masking tensors
M, a trained denoising model €g, the forward

ground truth noise on unmasked region e

total denosing step T.
Initialise:
Initial noise vector X7.

3. fort=Tto1do
Construct two input series X;" = {z\’fM 0, E;H '} with

10:
11:
12:
13:

v ® = oa:

masking M.

M,

1.7’

Predicting pg, Zg using the denosing model €g.
Sampling using equation (9) and obtain predicted X;_1.
Compute prediction error E; = ||X — X;—1]|%.

end for
fort=Tto1ldo

Computing the anomaly prediction label Y; using Eq. (12).

end for

Aggregating the voted anomaly prediction V; = Z’;r:] Yy
Computing the final anomaly prediction y; = 1(V; > §).
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Aot HHH2 = ImDiffusion 71X

Prediction + Sampling

C ted t P My
Masked data tYIM moarsr;:gdedata "rr-.wll l l t _er."1 _p)
[ ImTransformer € 9]_ E
+ [ Minimize
L Merge . ._ . MO M] 9
_ min L(0) :=minEx _o(x,).e~N(01),tll€ —€o (X7t [ e, p)|”.
Noise €¢ L Unmasked noise "' Input series ;" Ground truth © S

(11)

Once trained, we can utilize the diffusion model to infer the masked

Figure 4: The training process of IMDIFFUSION.

(a) Residual Structure (b) Detailed Residual Block Residual

head values given a random Gaussian noise XT 0 as well as the forward

Output

[COHVO[UtiOﬂa| La}’el'S]—Output (SpatialTrEnsfonTler Layer Convl = 1

I head . Ml
oy noise sequence added to the unmasked data € ..
Residual Block '
: Residual
Residual Block
esicua’ Boc Paths [Convl X 1] [Convl xl] [Concat]
Residual Block
Output head MLP i
Residual Block i i b . ) .
Residual  Input series Diffusion Masking Complementary[ Time Embedding L
head A Embedding t Embedding m Information | Feature Embedding K

Input
Figure 5: The INMTRANSFORMER architecture, with (a) the resid-

ual structure; and (b) the details of a residual block.
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Mt UHHE = Diffusion model 0lA2] condition S5 (noise S masked input 0| ==X| 6{1)

Conditional

—— Time Series Imputed Error Anomaly
) Predicted Series Normal Period
= S T —
e R o — — A — \ Mo
c 2 =S N =N VA A
I'n'I \f
) o A
N A N N N \VAlY \ VAN
Unconditional
—— Time Series —— Imputed Error Anomaly
) Predicted Series Normal Period
3 PR — A/ T~
< ~ A A A V'
= AA'S 0 S ""'u"l
yau A N o . . \YARY WAV
e e o AV A A N g SN A T N\ oA
0 25 50 75 100 125

Time

p(XMo | x M)

p(XMo | e

Figure 2: Example cases of conditional/unconditional diffu-
sion models for time series anomaly detection.
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Table 2: The Precision (P), Recall (R), F1 and R-AUC-ROC of all anomaly detectors on benchmark datasets. The average values
of P, R, F1 and R-AUC-ROC were calculated from 6 individual runs, while F1-std. is the standard deviation across the 6 runs.

Method SMD PSM SWaT

P R F1 Fl-std. R-AUC-PR P R F1 Fil-std. R-AUC-PR P R F1 Fi-std. R-AUC-PR
IForest 0.2030 0.2130 0.1799  0.0138 0.0257 0.6630 0.4919 0.5641 0.0070 0.2058 0.9764 0.6650  0.7907 0.0020 0.0685
BeatGAN 09013  0.8894 0.8797  0.0058 0.3200 0.9204 08767 0.8975 0.0178 0.3453 0.9606  0.7020 0.8107 0.0022 0.3215
LSTM-AD 0.3361 0.3229 0.2639 0.0123 0.0399 0.9050 0.7707 0.8313 0.0036 0.2561 0.9925 0.6737 0.8026 0.0013 0.3118
InterFusion 0.8815 0.9071 0.8772 0.0226 0.3012 0.9533 09128 0.9326 0.0036 0.189%6 0.8683  0.8530 0.8600 0.0309 0.1477
OmniAnomaly 0.8751 0.9052 0.8775 0.0083 0.2525 0.9551 0.8859  0.9191 0.0060 0.3718 0.9749  0.7500  0.8470 0.0271 0.3722
GDN 0.8460 0.7862 0.7865 0.0109 0.1637 0.8750 0.8385 0.8564 0.0000 0.3230 0.1311  0.0585 0.0808 0.0009 0.1318
MAD-GAN 0.8851 0.9045 0.8803  0.0384 0.2295 0.8596  0.8838 0.8698  0.0339 0.4416 0.7918 0.5423  0.6385 0.3048 0.2633
MTAD-GAT 0.8836  0.8330 0.8463 0.0316 0.3006 0.8763 0.8725 0.8744  0.0000 0.4116 0.8468 0.8224 0.8344  0.0067 0.3196
MSCRED 0.8567 0.9038 0.8426 0.0002 0.2601 0.9555  0.6857 0.7965 0.0102 0.3846 0.4823  0.4065 0.4407 0.3408 0.1668
TranAD 0.8906  0.8982 0.8785  0.0023 0.2941 09506 0.8951 0.9220 0.0045 0.3994 0.7025 0.7266  0.6886 0.1089 0.1670
IMDIFFUSION 0.9520 0.9509 0.9488 0.0039 0.3821 0.9811 0.9753 0.9781 0.0072 04711 0.8988 0.8465 0.8709 0.0124 0.1939

SMAP MSL GCP

Method -

P R F1 Fl-std. R-AUC-PR P R F1 F1-std. R-AUC-PR P R F1 F1-std. R-AUC-PR
IForest 0.2886 0.7671  0.4163 0.0026 0.1096 0.6059 0.5328 0.5334 0.0309 0.0942 0.8055 0.7385 0.7370 0.0120 0.1558
BeatGAN 0.8915 0.6781 0.7663  0.0162 0.1303 0.7782 0.8512 0.8102 0.0342 0.1421 0.9865 0.9630 09717 0.0074 0.2414
LSTM-AD 0.7841 0.5630 0.6533  0.0382 0.1099 0.7330 05745 0.6378  0.1473 0.1066 0.9591 09575 0.9553 0.0013 0.2610
InterFusion 0.8788 0.7704  0.8204 0.0077 0.1457 0.7688 09464 0.8442  0.0330 0.1083 0.9361  0.9720 0.9092  0.0005 0.2846
OmniAnomaly 0.8407 0.9674 0.8995  0.0078 0.0978 0.8321 0.8125 0.8221 0.0121 0.1290 0.9572 0979  0.9668 0.0027 0.2029
GDN 0.9689  0.5401 0.6936  0.0037 0.0961 0.8668 0.8072 0.8360  0.0004 0.1295 0.9648 0.9628 0.9589 0.0011 0.2096
MAD-GAN 0.9547  0.5474  0.6952 0.0013 0.0990 0.7047 0.7841 0.7423  0.0000 0.1301 0.9766  0.9558 0.9605 0.0055 0.1867
MTAD-GAT 0.9718 0.5259 0.6824 0.0012 0.1083 0.7321 0.7616  0.7432 0.0200 0.1278 0.9490 0.9523 0.9461 0.0047 0.2210
MSCRED 0.4107 0.8604 0.2712 0.0625 0.1042 0.5008 0.6088 0.4899 0.0788 0.1090 0.9754  0.9735 0.9712  0.0006 0.2068
TranAD 0.8224 0.8502 0.8360 0.0090 0.1077 0.8951 09297 0.9115 0.0051 0.1057 0.9472 0.9812 0.9631 0.0030 0.2026

IMDIFFUSION 0.8771 09618 0.9175 0.0095 0.1105 0.8930 0.8638 0.8779 0.0152 0.2381 0.9771 0.9825 0.9774 0.0014 0.3957
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Figure 6: The ensemble anomaly inference of IMDIFFUsION.
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« Conclusion
O|0|X| cilo|E{Allof|l A diffusion anomaly detection 22| X}0|&
@ REO| LEIICIE (U-Net vs Transformer or 4S-based U-Net)
®@ Input o HEE gtHgt Il image = CHEE feature map YHEHZ condition 2 =4, time series = imputation 2 Sl ({=~ T input 2|
HEE raw EHAHOM HESH= AO= Blo| 2&8%k= 2oz Hel.
® Diffusion model O] image 0l|Al= multi-class anomaly detection & | £2 M= H¥ 11 time series HIA|= imputation 7= 3! 22
HAIE o{EH| S| L2t ds XHO[7t L= A= HE, (step 2| X10|&= & 1000 vs 50, 100)
/" Feature space ™/ Pixel Space / Latent Space ——

[4— Train/Test «---- Testonly & Frozen @ Add]
/ / NNBS\E:\“ Mes-,{»,-n )
- T —>» & > » Diffusion Forward Process > Policy p=0 Policy p=1
I - % . 5 #
E : i Input Image
: : \ i
Xo

. =

N\ %

Time L

Feature K

Imputation prediction
Xo

Imputation prediction

Reconstruction Image

v [Junmaskeddata  []Maskeddata  [E]imputation prediction

A

D Figure 3: An illustration of the the grating masking and the
Network | ZT/ imputation process under this strategy.
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